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FROBENIUS MAPS OF ABELIAN VARIETIES 
AND FINDING ROOTS OF UNITY IN FINITE FIELDS 

J. PILA 

"If 'twere done when 'tis done, then 'twere well/ It were done quickly."-Macbeth. 

ABSTRACT. We give a generalization to Abelian varieties over finite fields of the 
algorithm of Schoof for elliptic curves. Schoof showed that for an elliptic curve 
E over Fq , given by a Weierstrass equation, one can compute the number of 

Fq -rational points of E in time O((logq)9). Our result is the following. Let 
A be an Abelian variety over Fq . Then one can compute the characteristic 

polynomial of the Frobenius endomorphism of A in time O((logq) ), where 
A and the implied constant depend only on the dimension of the embedding 
space of A, the number of equations defining A and the addition law, and 
their degrees. The method, generalizing that of Schoof, is to use the machinery 
developed by Weil to prove the Riemann hypothesis for Abelian varieties. By 
means of this theory, the calculation is reduced to ideal-theoretic computations 
in a ring of polynomials in several variables over Fq . As applications we show 
how to count the rational points on the reductions modulo primes p of a fixed 
curve over Q in time polynomial in logp; we show also that, for a fixed 
prime 1, we can compute the Ith roots of unity mod p, when they exist, in 
polynomial time in logp . This generalizes Schoof s application of his algorithm 
to find square roots of a fixed integer x mod p . 

1. INTRODUCTION 

In this paper we generalize to Abelian varieties over finite fields the algorithm 
of Schoof [19] for elliptic curves over finite fields, and the application given by 
Schoof for his algorithm. Schoof showed that for an elliptic curve E over a 
finite field Fq , given by a Weierstrass equation, one can compute the number of 
Fq-rational points of E in time polynomial in logq. The algorithm computes 
the characteristic polynomial P(t) E Z[t] of the Frobenius endomorphism of 
E. For an elliptic curve, P(t) is a monic, quadratic polynomial with constant 
term q, and the number of Fq-rational points of E is P( 1). Our result is the 
following. 

Theorem A. Let A be an Abelian variety over a finite field Fq, given explicitly 
as a projective variety with an explicit addition law. Then one can compute 
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the characteristic polynomial P(t) E Z[t] of the Frobenius endomorphism of 
A in time O((log q)A), where A and the implied constant depend only on the 
dimension of the embedding space of A, the number of equations defining A 
and the addition law, and their degrees. 

The dependence on the form of the equations defining A corresponds to the 
Weierstrass equation in the elliptic curve case. The algorithm is described in ?3, 
and its correctness is proved, while the running time is analyzed in ?4. Adleman 
and Huang [1] have announced a nondeterministic generalization of Schoofs 
algorithm to curves of genus 2 as part of a random polynomial-time primality 
test. This primality test generalizes that of Goldwasser and Kilian [4], which 
employed Schoofs algorithm. 

Applications. In the case that the Abelian variety A is the Jacobian variety of 
a curve C defined over Fq, the zeta function of C is immediately recovered 
from P(t), and in particular the number of Fq-rational points of C. If CO is 
a smooth projective curve defined over Q. we can construct, following Chow 
[3], the Jacobian variety JO of CO as a projective Abelian variety defined over 
Q. Then, for all but finitely many primes p, the reduction J of JO modulo p 
is the Jacobian variety of the reduction C of CO modulo p. These Jacobians 
all have the same form of defining equations, so we have: 

Theorem B. Let CO be a smooth projective curve over Q. There is a determinis- 
tic polynomial-time algorithm which on input p computes the zeta function of the 
reduction C of CO modulo p, hence, in particular, the number of Fp-rational 
points of C. 

Here, polynomial-time means time polynomial in logp. It should be possible 
to make Theorem B uniform for curves of a given genus. This entails showing 
that all curves of a given genus, over all fields (perhaps excluding a finite number 
of characteristics) can be presented by equations of the same form, and that their 
Jacobians can be uniformly constructed (with addition laws), again in the same 
form. We would thus do a precomputation for a given genus, rather than for a 
given curve over Q. (For curves of genus 2, there is some recent work toward 
doing this explicitly, by D. Grant (Formal groups in genus two, preprint) and 
by Cassels and Flynn.) 

Given a curve X0 defined over Q. but perhaps not smooth or projective, 
we can construct a smooth projective curve CO over Q birationally isomorphic 
to XO over Q. The birational isomorphism persists between the reductions 
X and C of X0 and CO modulo p for all but finitely many primes p. The 
Fp-rational points of X and C are in bijective correspondence except at points 
corresponding to singular points or points at infinity. The adjustment for these 
points is easily made in polynomial time, and we obtain: 

Theorem C. Let f(x, y) E Q[x, y] be absolutely irreducible. Then there is a 
deterministic polynomial-time algorithm which on input p, a prime number, 
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computes the number of solutions to the congruence f (x, y) - 0 mod p in 
Fp x Fp. 

Schoof applied his algorithm to compute square roots of a fixed integer x 
modulo primes p, where they exist, in deterministic polynomial time. Given 
x, an elliptic curve defined over a number field is constructed. For those p 
with (p) = 1, v/x mod p is recovered from the characteristic polynomial of 
Frobenius of the reduction of this curve modulo p. Applying our algorithm to 
the Fermat curve 

xl +l + 
I 

l = Z 

over Q. where / is a prime number, we obtain: 

Theorem D. Let / be an odd prime. There is a deterministic polynomial-time 
algorithm which on input p with p 1_ mod 1 (the condition that lth roots of 
unity exist modulo p) computes the lth roots of unity modulo p, and the prime 
ideals in Z[;,] lying over (p). 

Theorem D is proved in ?5. Huang [9, 10] has shown that, assuming the 
Extended Riemann Hypothesis, the roots of f (x) 0 mod p, where p is a 
prime and f (x) is an integral Abelian polynomial, can be found in deterministic 
polynomial time. 

Method ofproofof Theorem A. Our method generalizes the method of Schoof by 
appealing to the machinery developed by Weil [24, 25] to prove the Riemann 
hypothesis for curves and Abelian varieties. Our strategy is to compute the 
characteristic polynomial, P(t) E Z[t] of the Frobenius endomorphism q of an 
Abelian variety A over Fq by computing P(t) mod l for primes l < Hlogq, 
where H is a constant such that, for all q, 

J7J >2( 2g )qg 
primes I< H log q 

(lq)=1 

and g is the dimension of A. The desired H depends only on g and, from 
the prime number theorem, or indeed from the results of Chebyshev (see [5, p. 
341]), it is easy to see that H is linear in g . Using explicit results of Rosser and 
Schoenfeld [18], we see that we can take H = 9g + 3. Since the coefficients of 
P(t) are bounded in absolute value by (2gg)qg, the P(t) mod l for l < Hlogq 
are sufficient to recover P(t) using the Chinese remainder theorem. 

For (1, q) = 1, P(t) mod l is the characteristic polynomial of k acting as 
an F1-linear transformation of the 1-torsion points A[l] of A. We know that 
A[l] is a 2g-dimensional vector space over F1 . We check the action of polyno- 
mials in q on A[l] by explicit ideal-theoretic computations with their defining 
ideals. Schoofs algorithm reduces to ideal-theoretic computations in the ring 
of polynomials in one variable over Fq; we must operate in the ring of poly- 
nomials in several variables. For each 1, we obtain explicit expressions for the 
multiplication by n maps on A for n = 2, ... ., l, and a definition of A[l] as a 
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zero-dimensional algebraic set. In order that ideal membership be equivalent to 
vanishing on the algebraic set, we must ensure that our ideals are radical. The 
action of Frobenius is given by polynomials of degree q. We cannot operate 
with these, but must find low-degree equivalents to these polynomials on A[l] 
by repeated squaring and reduction modulo the ideal defining A[l]. 

Unlike the elliptic curve case, the characteristic polynomial may not be im- 
mediately recoverable from the minimal polynomial. To determine the powers 
of irreducible polynomials r(t) occurring in P(t) mod 1, we count the number 
of points in the kernels of powers of r(q) as transformations on A[l]. To count 
the points, we test linear independence of monomials with respect to an ideal. 
Not having a division algorithm as in the one-variable case, we must appeal to 
explicit bounds for ideal membership to reduce to systems of linear equations 
over Fq. 

Beyond establishing a running time bound polynomial in log q, we have not 
attempted to make the algorithm as efficient as possible, and it seems that con- 
siderably more work would be needed to make it amenable to implementation. 
A further difficulty is the lack of examples of explicitly defined Abelian varieties 
to serve as input. (For dimension 2, there is the aforementioned work of D. 
Grant, and Cassels and Flynn.) In the applications we give, Abelian varieties 
over finite fields are obtained by reduction of Abelian varieties defined over 
Q. The latter can then be obtained by constructions taking a bounded amount 
of time, independent of p, such as the construction of the Jacobian variety 
of a curve over Q. Here we have appealed to the construction of Chow [3] 
which, while possible in principle, is extremely impractical, even for curves of 
small genus. As a result, the algorithms in Theorems B, C, and D are extremely 
impractical in their present form. A possible alternative to projective Abelian 
varieties would be abstract Abelian varieties (see Weil [27] for the definition of 
abstract variety). Apart from being easier to construct, the constituent affine 
varieties would be embedded in spaces of much smaller dimension. 

2. PRELIMINARIES 

Algebraic geometry. Our notation and terminology is mostly standard, and can 
be found in Hartshorne [6], Shafarevich [21], or Silverman [22]. We also intro- 
duce some notation for moving between affine and projective varieties, and for 
explicit presentation of rational maps. 

Let K be a field with algebraic closure K. AJfine n-space over K is denoted 
An or An(K). If I is an ideal in K[X], where X = (X1, ... , Xn), then V(I) 
denotes the associated affine algebraic set in An. An affine algebraic set V 
is defined over K if the associated ideal I(V) in K[X] can be generated by 
elements of K[X] . If V is defined over K, the set of K-rational points of V 
is denoted V(K). If V is an affine algebraic set, the coordinate ring of V over 
K is 

K[V] = K[X]/I(V) n K[X]. 
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An affine algebraic set V is an affine variety if I(V) is a prime ideal in K[X]. 
Projective n-space over K is denoted pn or pn (K). Let X = (X0, ... , Xn). 

If I is a homogeneous ideal in K[X], then V(I) denotes the associated pro- 
jective algebraic set in pn (K). A projective algebraic set V is defined over K 
if the associated homogeneous ideal I(V) can be generated by forms in K[X]. 
If V is defined over K, the set of K-rational points of V is denoted V(K). A 
protective algebraic set V is called a projective variety if I(V) is a prime ideal 
in K[X]. 

If X = (X0, ...,Xn) and i is in the range 0,..., n, we let (X)i denote 
the n-tuple (X0, i.., X , Xi+1, ..., Xn) . We view (X)i as coordinates of 
A . If F(X) E K[X], we set 

F(X)i = F(X0 5 .. * * v i- l 1 Xi+J l .. * *1Xn) E K[(X)i] E 

We denote K[(X)i] by K[X]i. If I c K[X] is an ideal generated by F1 (X), 
. . , Fm (X) , we let Ii be the ideal in K[X]i generated by F1 (X), . .. , Fm(X)i. 
If V = V(I) is a projective algebraic set, we let Vi denote the affine algebraic 
set V(Ii) in An. 

Let V, W be projective varieties in pnf, pm respectively. A rational map 
: V - W is a map of the form 

C/ = (V/0 . .. ' /m) ' 

where tVi E K[X] are forms of the same degree, not all in I(V), with the 
property that for each F E I(W), F(y1O(X), .. ., 5gm (X)) E I(V) . We say that 
ig is defined at a point P E V if there exist forms 005 ..., Om E K[X] of the 
same degree such that 

(i) yViOj - yjOi mod I(V) for all i and j, and 
(ii) Oj(P) : 0 for some j. 

If tV is defined at P E V and the forms Oi have the above properties, we set 

ig(P) = 
(0O(P) 

, * 5 0m (P). ) , 

A rational map iV: V -? W that is defined at all points of V is called a 
morphism. 

Suppose iV: V -? W is a rational map of projective varieties. An m-tuple 
of forms (00, ... , 6m) , 6i E K[X] of the same degree, is called a chart for Vt 
if 

(i) yVi~j = Vj~i mod I(V) for all i and j, and 
(ii) 6i V I(V) for some i. 

There is a finite set of charts L1, ... Lr Li = (06 k,..., 6) with the 
property that if P E V and iV is defined at P, there is an Li such that 
O6(P) :$ 0 for some j. Such a set of charts is called an atlas for Vt. We say 
that iV is defined over K if V and W are defined over K and iV has an 
atlas consisting of forms in K[X]. This happens if and only if yV has a chart 
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consisting of forms in K[X]. For varieties in pn x pm, rational maps and 
charts are given by systems of bihomogeneous polynomials. 

Suppose that V C pn and W c Pm are projective varieties, and Vt and 
V are morphisms from V to W with atlases M and M'. Then the symbol 
[M, M'] will denote the set of all expressions 

Li(X)L'(X) -Lj(X)L(X), 

where i, j range over 0,..., m, (LOt ..., Lm) is a chart of tV belonging to 
M and (Lb, ..., Lm) is a chart of ig' belonging to M'. Thus, if V = V() 
the ideal (I, [M, M']) determines the subset of V of points P with V(P) = 

yv'(P). If Q is a point of W, then we also denote by Q the atlas for the 
constant map V -? W consisting of the single chart (Qo, ... , Qm) . 

Abelian varieties. Here we refer to any of the following: Weil [25], Lang [12], 
Milne [16], Mumford [17]. A (projective) Abelian variety A is a projective 
variety A together with a distinguished point E E A, and morphisms 

Vg:AxA-?A, 0:A -A 

such that A is a group with identity element E, composition law x y = 

Vt(x, y), and such that 6(x) =x . We say that A is defined over K if A is 
defined over K as a projective variety, E is a K-rational point of A, and the 
morphisms Vt and 0 are defined over K. An Abelian variety of dimension 1 
is an elliptic curve. If A is an Abelian variety, then the projective variety A is 
smooth, and the group A is commutative. 

Let A, B be Abelian varieties. By a homomorphism of A into B we will 
mean a morphism that is a group homomorphism. An isogeny is a homomor- 
phism whose kernel is finite. An endomorphism of A is a homomorphism of 
A into itself. 

Let A be an Abelian variety of dimension g defined over a field K. Since 
A is an Abelian group, we let + denote the group law on A. Let / be a prime 
distinct from charK. Then the map 1: A -? A, P -? iP = P + + P for 
P E A is clearly an endomorphism. It is also an isogeny. It is also separable, 
unramified, and of degree 12g, so that for any m, the kernel A[lm] of the map 
Im consists of 12gm points. The inverse limit of the A[lm] under the / map 
is called the Tate module and is denoted by TIA. It is a free module over the 
/-adic integers Z1 of rank 2g. The tensor product TIA 0 Q1 is a vector space 
over Q1 of dimension 2g. 

Let A be an Abelian variety defined over a finite field Fq of characteristic 
p. Let q be the Frobenius map of Fq7 that is, the map x xq . Then b 

extends to a map q: pN pN, where q(x0, ...,xN) = (4,...,Xy). Since 
A is defined over Fq, 4 restricts to a map q: A A. This map is a morphism, 
and also a group homomorphism since the addition law on A is defined over 
Fq and E E A(Fq); it is called the Frobenius endomorphism of A and denoted 
q. Clearly, q restricts to an automorphism of each A[lm], commuting with 
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the maps n: A -* A for any integer n, and hence induces a vector space 
transformation of T7A 0 Q1 over Q1, which we also denote q . 

Let P(t) be the characteristic polynomial of q as an endomorphism of T7A0 
Q1. Then P(t) is monic of degree 2g, has rational integral coefficients, and is 
independent of / for 1 :$ p; indeed, P(t) can be characterized independently 
of / by the property that P(n) = deg(q - n) for all n E Z. By the Riemann 
hypothesis for Abelian varieties (Weil [25]) the roots of P(t) in C have modulus 

We will compute P(t) by computing P(t) mod I for small / $ p. For such 
1, q acts as a vector space transformation of A[l] over F1 . Let P,(t) be the 
characteristic polynomial of this transformation. 

Proposition 2.1. Suppose / $ p. Then P,(t) P(t) mod 1. 
Proof. Let {x, . .. ., X2g} be a basis for TIA over Z,. Then {x1, .. ., X2g} is 

a basis of T7A 0 Q1 over Q1. Since q(A[lm]) c A[lm] for each m , the matrix 

M. of q with respect to this basis has entries belonging to Z,. The action of 
q on A[l] is represented by the matrix M., mod 1. o 

Ideal theory. Let K be a field, K an algebraic closure of K, and X = (XI 
Xj) a system of indeterminates. Let I be an ideal of K[X]. From the decom- 
position theory of ideals in Noetherian rings [23], there is a least positive integer 
e with the property that, for all f E K[X], if some power fn lies in I, then 
fe E I. This e is called the exponent of I, and denoted eK(I). An ideal 
of exponent one is called radical. An ideal I is called zero-dimensional if the 
affine algebraic subset V(I) of A n(K) determined by I consists of a finite set 
of points. 

Proposition 2.2. Suppose that L is an extension field of K, f, f1, ... , fr e 
K[X]. If f = Z aifi for some ai E L[X], then f = Eflifi for some fi E 
K[X]. Moreover, the monomials occurring in the fJi all appear in the aj. 
Proof. This is elementary linear algebra and can be found in [23, 16.7]. o 

For an ideal I in K[X], we denote by I the ideal generated by I in K[X]. 
From the above proposition it follows that if I and J are ideals in K[X], 
then I c J if and only if I c J. In writing relations of containment between 
ideals we can therefore suppress mention of the field. 

Proposition 2.3. Let I be an ideal in K[X]. Then eK(I) < eK(I). 
Proof. This is immediate from Proposition 2.2 and the least integer character- 
ization of the exponent. 0 

If a = (a1, ... , an) is a point in An(K), let Pa denote the ideal generated 
by Xi-aj, i= 1, ..., n, in K[X]. 

Proposition 2.4. Suppose that I is zero-dimensional and that Pa7 C (I, Pa7+') 
for each a E V (I). Then eK(I) < a? . 
Proof. This is a corollary of Noether's theorem in [23, 16.7]. n 
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Theorem 2.5. Let V, W be smooth projective varieties defined over K and of 
the same dimension, and let 0: V -? W be a finite morphism defined over K, 
given by an atlas M, and unramified at a point R E W (meaning that R has 
precisely deg 0 inverse images in V). Suppose that i E {0, ... , n}, and that I 
is an ideal in K[X]i with 7 = I(JVi). Then the ideal (I, [M, R]i) is radical. 

Proof. In view of Propositions 2.4 and 2.3, it suffices to show that for each 
point Q E Vi with 6(Q) = R we have 

PQ C (I, [M,5 R], 2Q) 

Note that if there are no such points Q. then (I, [M, R]i) = K[X]i by the 
Nullstellensatz, and is certainly radical. Choose j such that Rj $ 0, and so 
R E Wj . Let MQ = {F E K[V]: F(Q) = 0}, and let MR be the corresponding 
ideal in K[WJ]. Then the above is equivalent to the surjectivity of the induced 

map 0*: MR/MR 
2 

MQ/M2. That this map is an isomorphism of vector 
spaces follows from the hypothesis that 0 is unramified at Q (see [21, Theorem 
11.5.8]). n 

Theorem 2.6. Suppose I is a zero-dimensional radical ideal in K[X] with zero 
set V in An (K). Clearly, K[X]/I is a vector space over K. The dimension 
of K[X]/I over K is I VI, and there is a basis of monomials of degree at most 

IVI . 

Proof. If x, y are distinct points of V, there is a linear f E K[X] with 
f(x) = 1, f(y) = 0. Hence, for x E V there is an f E K[X] of total degree 
at most I VI - 1 such that f(x) = 1 , f(y) = 0 for y E V - {x} . The I VI such 
functions are clearly a basis for K[X]/I over K, so the monomials occurring in 
them, which are of degree at most I V , span K[X]/I over K . The monomials 
forming the basis of K[X]/I over K are linearly independent in K[X]/I over 
K. By Proposition 2.2 they also span. o 

The following theorem has a long history, of which we mention the papers 
by Hilbert [8], Hermann [7], Seidenberg [20], and Mayr and Meyer [1 5]. 

Theorem 2.7. Let K be afield, and Fij, Bi E K[X] for i = 1, ...,t, = 

1, ... , s, where X = 
(XI, ... , Xn). Suppose d bounds the degrees of the Fij , 

and b bounds the degrees of the Bi. Then the system of linear equations 

Fi-j Gj =Bi , i1.,t5 

j=1 

has a solution (G1, ..., Gs), Gi E K[X], if and only if it has a solution com- 
2n 

prising polynomials Gj E K[X] with deg Gj < b + (sd) 

Proof. We first observe, following [20], that we can assume that K is infinite. 
We now follow the exposition in [1 5]. Although the result there is stated only 
over Q. the only use made of this is to enable regularization of polynomials. 
This can be done whenever K is infinite. a 
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We appeal to this theorem in the special case of membership in a zero- 
dimensional radical ideal, in which situation better bounds than these may be 
available. 

3. THE ALGORITHM 

In this section we describe the algorithm of Theorem A and prove its cor- 
rectness. The next section establishes the asserted running time. Let A be 
an Abelian variety over a finite field Fq* We suppose A to be given in the 
following explicit form: 

1. Forms Fi(X), ..., Fs(X) E Fq[X], X = (X0 ...,XN), defining A as 
a projective variety in PN over Fq We assume that, for each i, the 
ideal (F1, ..., Fs)i is radical. Let 

T= max{degF1(X): j =1, ...,S}. 

2. An atlas for the addition law on A, consisting of R charts 

GU )(X, Y), i = 1, ..., R. 

GU) (X, Y) = (GO' (X, Y), ... , GN (X, Y)), 

where Y = (Yo ..., YN)' and G(.) (X, Y) E Fq[X, Y] are homoge- 
neous of the same degree D in each system of variables. 

3. The identity element E of A as a point in A(Fq) . 
4. The dimension g of A. A bound on the dimension is enough, and the 

dimension N of the embedding space is clearly such a bound. 
Our strategy is to compute the characteristic polynomial P(t) E Z[t] of the 

Frobenius endomorphism of A by computing P(t) mod / for many small 1. 
As remarked in ? 1, the / < H log q, where H = 9g + 3, suffice for this purpose. 
Note that, as remarked by Schoof [19], while we have appealed to the Riemann 
hypothesis for Abelian varieties to bound the coefficients of P(t) , trivial bounds 
would suffice. 

We proceed to describe the subalgorithm to be followed for each / < H log q, 
(1, q) = 1 . In order that the entire algorithm run in time polynomial in log q, 
it suffices that the subalgorithm run in time polynomial in 1. 

According to Proposition 2.1, P(t) mod / coincides with P, (t) , the character- 
istic polynomial of q as a vector space transformation of A[l] . The polynomial 
P,(t) has a factorization 

Pi(t) = r1(t)m' 

with ri(t) E F,[t] distinct, monic, and irreducible, and with 

E mi deg r, = degJP = 2g. 

For each i, mi deg ri is the F1-dimension of the largest kernel of the maps 

ri(4)J, j = 1, 2, ... , with j * deg ri < 2g as a subspace of A[l]. To compute 
the dimension of the kernel of a map r(q) on A[l], we compute the number of 
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points in the kernel. For this we will use Theorem 2.6. Note that these kernels 
contain at most 12g points, and / < log q . 

We begin by obtaining a list of the monic irreducible polynomials S(t) E F1[t] 
of degree < 2g, and the largest powers r(t) of these of degree < 2g. To 
obtain this, we can simply list the /2g possible polynomials and test them for 
irreducibility. We will describe a further subalgorithm to be carried out for each 
r(t), but must first make some more preparations. 

We must generate atlases M1, ..., Ml for the maps1 ,...,1: A - A in 
such a way that the number of charts comprising Mn, and the degrees of the 
forms comprising the charts, are polynomial in n . Let M1 consist of the single 
(N + 1)-tuple X = (XO, ... , XN); M1 is then an atlas for the identity map 
1: A -* A. We now set recursively 

M2n = f G() (L(X) , L(X)) : i = I , .,R. LE Mn} , 

M2n+ I = f Gi) (L(X), G~') (L(X), X)) : i, j = 1,..., R, LeAMnI} 

and establish the properties required. 

Proposition 3.1. The number of charts IMn I in Mn is less than or equal to 
R2lo02n -2102R 

Proof. We use induction on n, where the case n = 1 is trivial. Suppose 

IMnI < R2l02n . Then 

IM2nI < RR 210g2n < R210g22n 

IM2n+lI < R2R?2102n < R2lO12(2n+1) 

completing the induction and the proof. o 

Let Dn be the maximum degree of a form in Mn . Then we see immediately 
that 

D2n < 2DDn D2n+ <?DDn +D2D +D2, 

so that Dn < Pn(D), where the Pn (x) are polynomials defined recursively by 

p1(X) = 1, 

P2n(x) = 2Xpn(x), 

P2n+ 1 (x) = XPn (X) + X2Pn (x) + x2. 

Proposition 3.2. We have D < n 1+2log2 D 

Proof. The polynomials pn (x) have positive coefficients, and D is positive, so 
that, if dn is the degree of pn(x), we have 

Dn < Pn (D) < DdnPn (1) 

Now pn(l) = n trivially by induction, while the dn satisfy di = 0, d2n = 

dn + 1, d2n+l = dn + 2, so that, by induction, dn < 210g2 n. o 
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Using Ml, we have an ideal in Fq [X] determining the /-torsion points 
of A: 

A[l] = V(F1,..., Fs [Ml, E]). 

The notation [, ] is defined in ?2. Since the affine ideals (F1, ..., Es)i, 
i = 0, ... , N, are radical by hypothesis, and the map 1: A -* A is finite and 
unramified (since (1, q) = 1), we conclude by Theorem 2.5 that the ideals 

(F1, ... , [Ml, E])i, i = 0,..., N, 

are zero-dimensional and radical. 
For each i = 0, .. ., N we desire a monomial basis for the Fq vector space, 

Fq[A[l]i] = Fq[X]j/(Fi, . F. , F [Ml, E])i. 

Since 
IA[111 < IA[I1 = 12g 

we know by Theorem 2.6 that the monomials in (X)i of degree < 12g span 
Fq[A[l]i] over Fq . We reduce this spanning set to a basis by testing linear depen- 
dence with respect to the ideal (F1, . .. , Fs , [Ml, E])i . To test the dependence 
of a monomial m on monomials mIn, . .. , m, we appeal to the explicit bounds 
for ideal membership of Theorem 2.7 and try to solve the linear inhomogeneous 
system 

m-Eakmk =Ebif1, 

where the fj generate (F1,..., Fs, [Ml, E])ik E Fq, and bj eFq[X]i with 

degbj < 12g + ((S + NIMlI) max(T, D1))2 

This system has at most 

2g 2N N 
(1 +l+((S+NI M ) max(TD)) +?max(TD1)) 

equations (one for each monomial up to the total degree of the equation) in at 
most 

(1 +Ig + ((S+NjMj)max(TD D ) (S+NIMj +I2) 

unknowns (one for each coefficient of each bj, and up to 12g for the ak), and 
hence is a system of size polynomial in 1. 

By repeated squaring and reduction with respect to the basis of Fq[A[l]i] 
we obtain the low-degree polynomials equivalent on A[l]i to the powers of 

k 

Frobenius: q, ..., q2, that is, to the polynomials Xj for k = 1, ..., 2g, 
j: i, i = 0..., N. 

Now suppose that r(t) e Fl[t] is monic of degree < 2g. For each i = 
0, ... , N, we write down an atlas M(r, i) for r(q) on A[l]i, using the low- 

degree equivalents of qj . By Theorem 2.5, for each i, the ideal 

(F1, ... Fs, [Ml, E], [M(r, i), E], X :j< i)i 
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is zero-dimensional and radical. The number of points in its zero set can be 
computed by further reducing the basis of Fq[A[l]i]. For different i, the zero 
sets are disjoint, and the union over i gives the set of points P E A[l] with 
r(q)P = E. This completes the description of the algorithm. 

4. RUNNING TIME 

To operate in Fq, we assume given an irreducible polynomial f(x) E Fp[x] 
of degree [Fq: Fp]. The operation of the algorithm involves basically four 
kinds of activities: 

1. Polynomial arithmetic, including substitution of polynomials into other 
polynomials. This occurs in the formation of atlases for rational maps, 
in conjunction with reduction modulo ideals. 

2. Testing ideal membership. This entails solving linear inhomogeneous 
systems over Fq . These tests occur at several points in the algorithm. 

3. Finding all irreducible polynomials of degree < 2g in F1[t] for / < 
Hlogq, and the highest powers of these of degree < 2g. 

4. Recovery of P(t) from Pl(t) by means of the Chinese remainder the- 
orem. 

Among these operations, the solution of the linear inhomogeneous systems 
associated with the ideal membership determinations dominate in number of 
required field operations in Fq, and we restrict our attention to them. Ideal 
membership tests arise at five points in the algorithm: 

1. Computing monomial bases of Fq[A[l]]i. 
2. Obtaining low-degree equivalents to Frobenius. 
3. Obtaining low-degree atlases for the maps aqm, a E F1. 
4. Obtaining low-degree atlases for r(Q), r(t) E Fl[t]. 
5. Counting the points in the kernel of r(q) on A[l]i. 

We will examine each of these to determine the parameters of the linear sys- 
tems involved in each, and how many times we must solve such a system. All 
the ideal membership determinations are in the ring of polynomials in N vari- 
ables over Fq, where N is the embedding space dimension of A. According 
toTheorem2.7, BE(Fi, ... ,Fr),where B,FjeFq[X], X=(X, ...,XN) 
if and only if B= FiGi with 

2n 
degGi< b+(rd) 

where deg B < b and deg Fi < d. We will bound the parameters b, d, r 
and the number of iterations m in each of the above situations. The linear 
inhomogeneous system arising from B = E FiGi has at most 

(1+b+(rd)2 +d)N 

2NN equations in at most (1 +b + (rd) ) *r unknowns. In the tests of monomial de- 
pendence, the coefficients of B contribute additionally at most 12g unknowns. 
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Thus the size of the linear system involved is at most 

r(1 +b+(rd) +d) f+2g 

and the solubility or solutions can be obtained in O((size)3) elementary oper- 
ations. 

1. Computation of monomial bases. We must compute a monomial basis of 
Fq[A[l]]i for each / < Hlogq, and each i = 0, ... , N. We begin with a 

spanning set of 12gN monomials, each of degree < 12g . The ideal defining A[l]i 
is generated by at most r = S + NIMl I polynomials. For the other parameters, 
we have b = 12g, d = max{ T, D1 }, and m = H(logq) (N + 1)12gN . 

2. Low-degree equivalents to Frobenius. We must find low-degree (< 12g) 
k 

equivalents of the polynomials Xq on A[l]i for l < Hlogq, i = 0O..., N. 
I~~~~~~~~~~~~~ k = 1, ..., 2g, j $ i. It is trivial by induction that we can compute x' from 

x in at most 2 1og2 n multiplications. Performing a reduction to a polynomial 
of degree < l2g with respect to the ideal of A[l]i between each of these gives 
us 

m = H(logq)(N + 1)2g * N * 2.10g2(q2g) 

b =14g, d= max{T, D1}, r=S+NIM1I. 
3. Low-degree atlas of aqn . Compute, for each 1, a low-degree atlas of aqm 

on A[l]i for each i, m = 1, ... , 2g, for each a E Fl. We must substitute the 
low-degree equivalents to Om into Ma, the atlas for a. Since M has IMaI a ~~ ~~~~~~aa 
charts, each with N + 1 coordinate functions, we have 

m = H(logq)(N + 1)2g * 1 * IM.1 * (N + 1), 

b = 12gDJ, d = max{T, D*}, r = S + NIM*I, 
where IM*I bounds the IM I for a E F1, and D* bounds the Da, for a E F,. 
4. Low-degree atlas of r(q) . We add the terms of the form aqm , reducing as 
we go. The number of charts increases with each of the 2g additions. Thus 
we have 

m = H(log q)l2g(N+ 1)(N + 1) 

*E(RIM*I22+ R2IM 2 
3+.+. + R2g+lM* I2g+2 

b =1 d = max{T, D*}, r = S + NIM*I. 

5. Counting kernel of r(q) on A[l]i. We must add generators to the ideal of 
A[l]. to get the ideal of the kernel; thus, 

r = S + NIMl I + NR2g+I M I2g+2 

For each 1, r(q), and i, we must reduce a spanning set of 12g monomials to 
a basis. As there are up to 12g polynomials r(t), we have 

m = H(logq)(N + 1)/4g, d = max{T, DJ, 12g}I b = 12g. 
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From Propositions 3.1 and 3.2 we can take 

I M * g~< 121o0g2R D D < 1+210o2D 

This gives a running time bound of the desired form O((log q) ), where A and 
the implied constant depend on the parameters N, S, T, R, D, g. We note 
that 

A < 6(2g + 2)(2logR) * max{2g, 1 + 2logD} * N2N 

is independent of S and T. This completes the proof of Theorem A, and 
hence also of Theorems B and C, as indicated in the introduction. 

5. FINDING ROOTS OF UNITY IN FINITE FIELDS 

In this section we prove Theorem D. Let / be an odd prime. Write / = 

2m + 1. Let g(x) be the /th cyclotomic polynomial, and 4' a root of g(x) 
in C. The following statements are equivalent: 

1. The prime ideal (p) in Z splits completely in Z[Cl]. 
2. g(x) factors completely in Fp[x]. 
3. p=_mod/. 

We consider the following problems: 

Problem A. Given 1, p with p 1 mod 1, find the 2m primes lying over (p) 
in Z[Cl]. 
Problem B. Given 1, p with p 1 mod 1, factor V(x) in Fp[x]. 

As is easily shown, these problems are polynomial time equivalent. More 
generally, Huang [9] shows that factoring polynomials of degree n in Fp[xl is 
polynomially equivalent to factoring (p) in algebraic number fields of degree 
n, where p is regular with respect to the generating polynomials. 

Our method is based on Jacobi sums, which we can compute in time polyno- 
mial in log p via the characteristic polynomial of the Frobenius endomorphism 
of the Jacobian variety of the Fermat curve. We show that the prime ideals over 
(p) are generated by certain combinations of Jacobi sums, and the algorithm 
is simply an exhaustive search over the appropriate combinations. The veri- 
fication of a correct choice is accomplished by checking that we have found 
the /th roots of unity mod p. In this way, we solve both Problems A and B 
simultaneously. 

Equivalence of Problems A and B. Given the factorization fl(x - aj) of g(x) 
in Fp, the primes above (p) are (p, C, - at). Conversely, suppose we are 
given that (ul, ... , Uk ) is a prime lying over (p), where ui e Z[l]. Write 
ui = hi(Cl), where hi(x) e Z[x], deghi(x) < 1-2. Since (p) splits completely, 
and p e (ul, ..., Uk), we have 

Fp- Z[41] Z Fp[x] 
P 

. U1 ,.*. ,Uk) (hl(x), * k ,hk(X) I (X)) 

~~ ~Fp[x] 
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Hence, the gcd must be linear. That is, 

gcd(h, (x), . .. , hk(x), I V(x)) = x - a 

for some a E Fp, which is then a primitive lth root of unity. 

Jacobi sums. Here we follow [11, pp. 4-13]. Let G be the Galois group of 
Q(Cl) over Q. Then G is cyclic of order / - 1. We identify G with the 
multiplicative group F7 by denoting the elements of G as cc, c E F>, where 
cCl = Cc. Let e be a generator of F7, so that G = {e i = 0..., 1 - 1}. As 

is well known, G acts transitively on the primes of Z[Cl] above (p). Since (p) 
splits completely, the number of primes above (p) is / - 1 , the order of G. So 
if Pi, P1 are primes above (p), there is a unique c E F7 such that cc Pi = Pj . 1~ ~~1 j 

For N an integer, let 11N denote the group of Nth roots of unity in C. If 
X1, X2: F; -p-* are characters, define Xi(O) = 0 and set 

J(XI1 X2) = > (X)/2(l - x) 
xEFp 

J is called a Jacobi sum. Let P be a prime in Z[Cl] over (p), and let X = Xp 
be a character of F* determined by p 

X(a) _ a-(P- )11 mod P. 

Note that a (P 1)/1 is an /th root of unity in Fp. Thus, x generates the group 
of characters F -,ul . 

Let (t) denote the fractional part of a real number t, with 0 < (t) < 1 . For 
an integer d, we let [d](t) = (dt). Also set A[a, b] = [a] + [b] - [a + b]. Define 
the Stickelberger element of level / in the rational group ring by 

O(l)=EKA7C -1 
cEF* 

Then for ab(a + b) # 0 mod 1 we have the following factorization of the Jacobi 
sum: 

(J(Xa, xb)) = pA[ab]0(l), 

where 

A[a, b]0(l) = E ((1I)+ K - K(a /)c) c 
cEF* 

lies in the integral group ring Z[G]. Indeed, since 

J(Xa,X )J(X , bX) = P 
for any a, b with ab(a+b) 0 0 mod 1, we see that of the 2m primes over (p), 
exactly m divide J(Xa, Xb), and the conjugates of these divide J(xa, Xb ). So 

m 

i= 1 
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Let C be the Fermat curve defined by X1 + y + Z1 =0 over F . Then by 
Weil [26] (or see [11, p. 22]), the zeta function Z(C, T) is given by 

fl(1 -aabT) 

(1- T)(1 -pT) 

where 

caab = X ( 1)J(Xa Xb) 

and the product ranges over a, b E F1 with ab(a + b) # 0 mod 1. 

Method. We will try to write a prime ideal P in Z[Cl] over (p) as P = 

(J1V.. Jm) for certain Jacobi sums J1,,... Jm. This method succeeds if 
and only if the Jacobi sums separate the primes, meaning, if Pi, P. are dis- 
tinct primes over (p), then there is a choice of a, b with ab(a + b) 0 0 mod / 
such that 

Pi (J(x, X)) and P t (J(Xa ,x)) 
The next three propositions show that the Jacobi sums do separate the prime 
ideals over (p). Indeed, there is a choice of (a, b) with the property that 
J(Xa, xb) and its conjugates under the Galois action separate the primes over 
(p) - 

Proposition 5.1. Suppose that the Jacobi sums J(a xb ) do not separate the 
primes over (p) . Then for each a, b 

m 

A[a, b]0(1) =, f-1, 
i=1l 

where {ci i = 1, ..., g} is a union of cosets of a multiplicative subgroup of 
F>, other than the trivial subgroup, 1 }I. 

Proof. Suppose P1, P are not separated. Let a, b be integers with ab(a+b) W 

O mod 1. Suppose Cen Pi = Pj , n $& 0, where e is a generator of F> . Now 

suppose that ad is a summand in A[a, b]H(l). So adp I (J(,a, xb)). Choose 
k so that ukadP = Pi. Then 

Pi I (kJ(Xa, Xb)), uJ(Xa, Xb) = J(Xka Xkb) 

Since Pi, Pj are not separated, Pj I (ukJ(Xa , Xb)) or, equivalently, 

-1 
f7nfkldP I (J(X, 

a 

But 7k enakad = Uenad = Tend* So Cend is a summand in A[a, b]H(l). Thus, 

A[a, b]H(l) = Z r1 , where {ci} is a union of cosets of the multiplicative 
subgroup of F7 generated by en, which is nontrivial since Pi $& P;. ? 

Proposition 5.2. Suppose that ci: i = 1, ..., m} is a union of cosets of a 
nontrivial multiplicative subgroup of F7 . Then Em c7 1 = 0 in F1. 
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Proof. Let the subgroup be H, generated by x $ 1, with xm = 1, HI = m. 
Let al, ...a, k be coset representatives. Then 

m k m-1 k m-1 
c (1 = EZ(aiX7- IEa i n 

i=1 i=1 n=O i=1 n=O 

k m I k-m1 
0. 

I 

i X- 

Proposition 5.3 [2, p. 183]. Let / be an odd prime. There exist a, b E Z with 
ab(a + b) # 0 mod I and 

E ( ((a+b)u + au + b u I0 model. 
UEF* 

Proof. This proof is from [2], and uses the greater integer, [], rather than the 
fractional part (). Since [x] + (x) = x and (a + b)u/l - au/l - bu/l = 0, 

For 1 < u < 1 - 1, [u/l] = 0 and [(1 - 1)u/l] = u- 1. So 

1E E- ([ I)U mu IA 

rn=1 u=1 ii 

U 
U' =Y(u- 1)u- 

- 

1 
[t ']u=1 

- / - 1 # 0 mod 1. 

So there is a pair (a, b) = (m, 1), m = 1,..., 1 - 2, with the desired proper- 
ties. 5 

The algorithm. Let 1, p be given with / an odd prime and p =1 mod / also a 
prime. Construct the Jacobian variety J of the Fermat curve X + yl + z' = 0 
over Q, together with the addition law on it, following Chow [3]. Compute a 
bound B such that for p > B. the Fermat curve is smooth as a curve over Fp, 
and the reduction of J and the group law on it modulo p gives the Jacobian 
of the Fermat curve as a curve over Fp, and a group law on it. 

We can assume that p > B. Reduce J mod p and compute the characteristic 
polynomial P(t) of Frobenius in time polynomial in logp, using the algorithm 
of Theorem A. Factor P(t) over Z[Cl]. This can be done in time polynomial in 
the degree of P(t) and the logarithms of the coefficients using A. K. Lenstra's 
extension to number fields [13] of the polynomial-time algorithm for factoring 
polynomials over Q due to A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovdsz 
[14]. 

The roots {ald I--, a(1-1)(1-2)} of P(t) are, up to units, the Jacobi sums 

J(Xa, Xb) for ab(a + b) # 0 mod 1. By Propositions 5.1, 5.2, and 5.3, at 
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least one of these ai has the property that it, and its conjugates, separate the 
prime ideals over (p). We therefore conclude with an exhaustive search, over 
all m element subsets of the G orbits of each ai. The number of choices 
depends only on 1, and a correct choice can be verified by trying to construct 
the corresponding root in Fp . 
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